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Abstract 
 
In this paper the dynamic response of a simply-supported, finite length Euler-Bernoulli beam with uniform cross-section resting on a 

linear and nonlinear viscoelastic foundation acted upon by a moving concentrated force is studied. The Galerkin method is utilized in 
order to solve the governing equations of motion. Results are compared with the finite element solution for the linear foundation model in 
order to validate the accuracy of the solution technique. A good agreement between the two solution techniques is observed. The effect of 
the nonlinearity of foundation stiffness on beam displacement is analyzed for different damping ratios and different speeds of the moving 
load. The results for the time response of the midpoint of the beam are presented graphically.  
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1. Introduction 

Recently, the investigation of the dynamic response of 
beams on viscoelastic foundations subjected to moving loads 
has been of great significance in railway engineering. Zheng et. 
al [1] gave a general solution dynamical problem of an infinite 
beam on an elastic foundation. Lee [2] investigated the dy-
namic response of a Timoshenko beam on a Winkler founda-
tion subjected to a moving mass. Thambiratnam and Zhuge 
[3] studied the dynamics of beams on an elastic foundation 
subjected to moving loads by using the finite element method. 
They investigated the effect of the foundation stiffness, travel-
ing speed and length of the beam on the dynamic magnifica-
tion factor, which is defined as the ratio of the maximum dis-
placement in the time history of the mid-point to the static 
mid-point displacement. Kim [4] investigated the vibration 
and stability of an infinite Euler-Bernoulli beam resting on a 
Winkler foundation when the system is subjected to a static 
axial force and a moving load with either constant or har-
monic amplitude variations. The effects of load speed, load 
frequency, damping on the deflected shape, maximum dis-
placement and critical values of the velocity, frequency and 
axial force are also studied. Kargarnovin and Younesian [5] 
studied the response of a Timoshenko beam with uniform 
cross-section and infinite length supported by a generalized 

Pasternak viscoelastic foundation subjected to an arbitrarily 
distributed harmonic moving load. Kargarnovin and Youne-
sian [6] also analyzed the dynamic response of infinite Ti-
moshenko and Euler-Bernoulli beams on nonlinear viscoelas-
tic foundations to harmonic moving loads.  

In this study, the dynamic response of a simply-supported, 
finite length, uniform cross-section Euler-Bernoulli beam 
resting on a linear and nonlinear viscoelastic foundation acted 
upon by a moving concentrated force is studied. In existing 
literature, research based on the response of beams on founda-
tions assumes that the beam is infinite. In this study, an infi-
nite track is replaced by a finite track. Since the beam is 
placed over a very stiff foundation, the moving load has a 
local effect and it is sufficient to analyze a small portion of the 
beam. The Galerkin method is used to solve the initial bound-
ary value problem that governs the transverse vibration of the 
beam. Time response histories of the beam are graphically 
presented for various speeds of force. The effect of non-
linearity of the foundation stiffness is also investigated. 

 
2. Theory and formulation 

In Figs. 1 and 2, simply-supported, homogeneous, isotropic 
and constant cross-section beams of length L over viscoelastic 
foundations are shown. Linear and nonlinear foundation mod-
els are used. Viscoelastic foundations consist of dashpots and 
springs. In the literature, the railway track is usually assumed 
to be linear in order to simplify the track model, although the 
rail pad and ballast are actually non-linear. The beam is ini-
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tially assumed to be at rest and undeformed. The force f(x,t) is 
expressed as follows: 

 
0( , ) ( ( ))f x t x g t Pδ= −

 
 (1) 

 
where δ is the Dirac-Delta function, P0 refers to the constant 
force and g(t) represents the kinematics of the moving force as 
follows: 

 
( )g t vt=   (2) 

 
where v is the constant speed of the force. The Dirac-Delta 
function, δ(x), is thought of as a unit concentrated force acting 
at point x=0. The Dirac-Delta function is defined as: 

 

( ) ( ) ( ) , for 
b

a

x f x dx f a bδ ξ ξ ξ− = < <∫ . (3) 

 
2.1 Linear foundation model 

To compare the effects of the linearity and nonlinearity of 
the foundation, a linear foundation model is considered first. 
A linear viscoelastic foundation model is shown in Fig. 1. 

The problem is governed by the following differential equa-
tion: 
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where EI, ρ, A, c and w(x,t) are the flexural rigidity, the den-
sity, the cross-sectional area, the damping coefficient and the 
transverse deflection of the beam at point x and time t, respec-
tively. kL is the linear foundation stiffness and c is the viscous 
damping coefficient of the foundation. The simply-supported 
beam boundary and initial conditions are: 
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2.2 Nonlinear foundation model 

For this model, the viscoelastic foundation is modeled by the 
combination of linear and cubic nonlinear springs, where kNL 
is the nonlinear part of the foundation stiffness and c is the 
damping coefficient. The problem is governed by the follow-
ing differential equation: 
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The boundary and initial conditions are the same as given in 

Eqs. 5 and 6. Eq. 7 represents a nonlinear initial boundary 
value problem. 

 
3. Solution method  

3.1 Galerkin method 

The Galerkin method is applied to Eqs. 4 and 7 to discretize 
the problem in a spatial coordinate and to obtain a system of 
ordinary differential equations in the time domain. The trans-
verse displacement is assumed in the following form: 
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The basis functions are selected as Sin(nπx/L) in order to 

satisfy the boundary conditions in Eq. 5. By using Eq. 8 and 
Eq. 4, the Galerkin method can be applied for the linear foun-
dation model as follows: 
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which simplifies to the following form:  
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Fig. 1. Simply-supported beam on linear viscoelastic foundation. 

 

 
 
Fig. 2. Simply-supported beam on a nonlinear viscoelastic foundation.
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and the initial conditions in Eq. 6 become: 
 

(0) '(0) 0 1,2,3,...,m mT T for m N= = = .  (11) 
 
The same procedure for the nonlinear foundation model is 

repeated, and the governing equations are derived. 
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The initial conditions in Eq. 11 apply to both linear and 

nonlinear foundation models. 

 
3.2 Finite element method 

In order to validate the results obtained with the Galerkin 
method, the displacement field for the linear foundation model 
is evaluated with FEM. For the Euler-Bernoulli beam, the 
element mass and stiffness matrices are given as follows: 
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The element force vector for a point load is given by: 
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where Le is the length of an element. The element damping 
matrix and the element stiffness matrix for the foundation are 
derived from the mass matrix by replacing the coefficient ρA 
with c and kL, respectively. The element matrices are joined to 
form the global matrices and then the boundary conditions are 
applied. The element force vector is taken, as in Eq. 15, if the 
load is on the element, otherwise it is taken as zero. 

4. Results and discussion 

A finite beam of 50 meters in length is considered long 
enough to replace an infinite beam. The material properties for 
the rail, foundation and load are presented in Table 1 [6]. 

For each velocity case, damped and over-damped dynamic 
responses of linear and nonlinear viscoelastic foundation 
models are investigated. For the linear foundation model, 
damping ratios are determined by considering the critical 
damping coefficient (ccr). The damping ratio (ξ) is expressed 
as follows: 

 
/ crc cξ =   (16) 

2cr Lc k Aρ=   (17) 

 
Fig. 3 shows the comparison between the results of the 

Table 1. Properties of UIC60 rail. 
 

Young’s modulus (N/m2) 21 x 1010 

Area moment of inertia (m4) 3.055 x 10-5 

Cross sectional area (m2) 7.69 x 10-3 

Density of the material (kg/m3) 7850 

Length of the beam (m) 50 
Linear spring stiffness per length  

(Linear foundation) (N/m2) 1.386 x 108 

Linear spring stiffness per length 
(Nonlinear foundation) (N/m2) 3.503 x 107 

Nonlinear spring stiffness per length 
(Nonlinear foundation) (N/m4) 4.01 x 1014 

Moving load (N) 65 x 103 

 

 
 
Fig. 3. Time response of beam evaluated with Galerkin method and 
FEM (v=20 m/s, ξ=9.47). 
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Galerkin and finite element methods for a linear foundation. 
Since the beam model is simply supported at both ends, and 
because of the symmetry, maximum deflections will occur at 
the mid-span of the beam, L/2. Therefore, the results are pre-
sented for this point. 

The results show that a perfect agreement between these two 
methods is reached as the number of elements considered in 
the finite element calculation increases. 

Figs. 4-6 show a one second time portion of the mid-point 
vertical deflections with time. The velocity is taken between 
10 to 50 m/s. 

Fig. 4 shows the effect of moving load speed on the vertical 
deflection for a relatively small damping ratio. The local effect 
of the moving load is clearly seen from the figure, especially 
at higher speeds. Vertical mid-point deflections are virtually 
negligible until the moving loads approach the midpoint. 

Another important point is that the transverse vibration am-
plitude decreases with increasing speed. The nonlinear and 
equivalent linear models are in good agreement for small de-
flections. However, the effect of nonlinearity starts to domi-
nate for larger deflections. It can also be seen from the figures 

that for ξ=0.5, the transverse displacement of the beam is close 
to being symmetrical. Moving load speed and nonlinearity 
have similar effects for higher damping ratios, as shown in 
Figs. 5 and 6. 

However, as the damping ratio increases, the symmetry of 
the displacement is distorted. The magnitude of the vibration 
amplitude decreases with increased damping due to the loss of 
kinetic energy in the form of heat energy. Kargarnowin et al. 
[6] studied the effect of two successive moving loads by using 
an FEM model. The results presented in Figs. 4-6 show very 
good agreement with the results in [6] in terms of both the 
magnitude and the distribution of deflection. 
 

5. Conclusions 

In this study, the dynamic response of a simply-supported, 
finite length Euler-Bernoulli beam with uniform cross-section 
resting on a linear and nonlinear viscoelastic foundation acted 
upon by a moving concentrated force is studied. An infinite 
track with nonlinear foundation is replaced with a finite one. 
This boundary value problem was solved for linear and 

 
 
Fig. 4. Time response diagrams of beams with two distinct foundation
models for the damping ratio ξ=0.5. 

 

 
Fig. 5. Time response diagrams of beams with two distinct foundation 
models for the damping ratio ξ=5. 
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nonlinear cases by applying the Galerkin method. The time 
responses of the beams with linear and nonlinear cases are 
presented for various speeds of moving force. The effects of 
nonlinearity in stiffness can easily be observed from the fig-
ures. From Figs. 4-6, one can deduce the following results: 

•  As the force speed increases, the dynamic response of the 
beam decreases for both linear foundation models.  

•  As the damping ratio (ξ) increases, the dynamic deflec-
tions decrease for both linear and nonlinear cases. 

•  For the nonlinear foundation model, the dynamic response 
of the beam is always greater when compared to the linear 
foundation model. 

•  The distribution of deflection is symmetrical for small 
values of the damping ratio and this symmetry is distorted 
with increasing damping. 
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Fig. 6. Time response diagrams of beams with two distinct foundation
models for the damping ratio ξ=10. 

 


